
Capturing Emerging Complexity in Lenia

Sanyam Jain;
Aarati Shrestha;
Stefano Nichele.

Dept of Computer Science and Communication

Østfold University College & OsloMet University

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

2/24

Table of Contents

1 Complexity and Open-Endedness
Complexity
Open-Endedness
Evolvability

2 Lenia
Continuous CA
Lenia Update Rule
Kernel and Growth Function

3 Emerging Complexity and
Behaviour
EvoLenia: Compression based
EvoLenia: Variation based
EvoLenia: AEVoT
EvoLenia: Rest details

4 Results
Results VoT (Not a good
fitness!)
Results AE (Not a good fitness!)
Results AEVoT (Better than
both)
Results AEVoT (for known
Kernel)

5 Challenges and Future
Improvements
Challenges, Learnings and
Conclusion
Future Scope of Improvement

6 References and Offline material

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

Complexity and
Open-Endedness

3/24

4/24

Complexification

End Goal: How to solve a task?[Clune, 2019];

Where Manual AI fails? [Stanley et al., 2017];

Novelty, Task based and Hybrid approaches
[Stanley et al., 2017];

Open-endedness and Complexification goes together
[Randazzo and Mordvintsev, 2023];

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

5/24

Why open-endedness?

Endless variation implies complexification;

Fundamental questions: initial conditions, selection pressure,
etc;

Endless variation + Sensitivity to initial conditions +
Selection pressure = Complexification
[Randazzo and Mordvintsev, 2023]
OR
Open-endedness allows AI systems to continue to learn and
improve over time, adapting to changing environments and
evolving to meet new challenges

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

6/24

Why Evolvability? [Randazzo and Mordvintsev, 2023]

Heritable Genetics and Selectable Phenotype with variation;

Without Evolvability there would be no discovery, no new
behaviour;

Dynamical task landscapes, adaptive mutations, novelty
search;

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

Lenia [Chan, 2018]

7/24

8/24

Lenia and Expanded Universe

Bert Wang-Chak Chan

Hong Kong
albert.chak@gmail.com

Abstract

We report experimental extensions of Lenia, a continuous
cellular automata family capable of producing lifelike self-
organizing autonomous patterns. The rule of Lenia was gen-
eralized into higher dimensions, multiple kernels, and multi-
ple channels. The final architecture approaches what can be
seen as a recurrent convolutional neural network. Using semi-
automatic search e.g. genetic algorithm, we discovered new
phenomena like polyhedral symmetries, individuality, self-
replication, emission, growth by ingestion, and saw the emer-
gence of “virtual eukaryotes” that possess internal division of
labor and type differentiation. We discuss the results in the
contexts of biology, artificial life, and artificial intelligence.

Introduction
The study of cellular automata (CA) is one of the major
branches in artificial life and complex systems research.
CAs were invented by John von Neumann and Stanislaw
Ulam (Von Neumann, 1951; Ulam, 1962), then popularized
by John H. Conway’s Game of Life (GoL) (Gardner, 1970)
and Stephen Wolfram’s elementary cellular automata (ECA)
(Wolfram, 1983). On the one hand, research on CAs led to
proofs of Turing completeness and therefore the capability
for universal computation in CAs, e.g. GoL and ECA Rule
110 (Rendell, 2002; Cook, 2004). On the other hand, CAs
were utilized to model complex systems, generate patterns,
and produce computer art.

One line of investigation involves attempts to construct
long-range or continuous CAs, search for and study self-
organizing autonomous patterns, or solitons. These attempts
include CAPOW (Rucker, 1999), Larger-than-Life (Evans,
2001), RealLife (Pivato, 2007), SmoothLife (Rafler, 2011a),
Lenia (Chan, 2019), and extended Lenia discussed in this
paper. They generalize GoL into continuous space using ar-
bitrary long range neighborhoods, into continuous time us-
ing arbitrary small incremental updates, and into continuous
states using real numbers.

The algorithm of Lenia is as follows (see Figure 1).

1. Take a 2D array (world A) of real values between 0 and
1, initialize with an initial pattern A0.

2. Calculate weighted sums of A with a predefined array
(kernel K), which is equivalent to calculate the convo-
lution K ⇤A; the kernel K has radius R, forming a ring
or multiple concentric rings (parameter � = list of peak
value of each ring).

3. Apply a growth mapping function G to the weighted
sums; the growth mapping G is any unimodal function
(parameters µ = growth center, � = growth width).

4. Add a small portion dt of the values back to the array A.

5. Finally clip the states of A to between 0 and 1.

6. Repeat steps 2-5 for each time-step.

In formula:

At+dt = [At + dt G(K ⇤At)]
1
0 (1)

(a) KA
x

G

0
1

-1

KA

x

G

0
1

-1

(b)

N

N

Figure 1: Rules of GoL and Lenia. (a) In GoL, a site x in the
world A has 8 surrounding sites as its Moore neighborhood
N . Calculate the weighted sum of N with kernel K (all
weights 1), apply a mapping function G (survival = 0, birth
= +1, death = -1), add the value back to the site x and clip
it to 0 or 1, repeat. (b) In Lenia, the rule is similar, but
generalized to the continuous domain - infinitesimal sites x
with real values, circular neighborhood N , ring-like kernel
K, smooth mapping G, and incremental update by factor dt.

In such a continuous CA system, many self-organizing,
autonomous solitons were discovered with diverse structures

ar
X

iv
:2

00
5.

03
74

2v
1

 [n
lin

.C
G

]
7

M
ay

 2
02

0

Figure: Discrete CA vs Continuous CA

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

9/24

Lenia Update Rule

Update function

The Lenia update rule is given by:

At+1 = [At +∆t G (K ∗ At)]

At : Current State at t
∆t: Step size
G : Growth Function (for eg. Gaussian)
K : Neighborhood Kernel
∗: Convolution operation

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

10/24

Kernel and Growth Function

Kernel Function

Weighted importance to
neighboring pixels and
gradually reduced
importance to distant
pixels.

Calculate the distances of
each coordinate from the
center and apply a mask to
filter out values outside the
desired radius.

Growth Function

By adjusting the µ and σ
parameters of the G , each
cell’s growth or decay can
be controlled by taking
input as Nh. sum array.

f (x) =
1

σ
√
2π

e−
(x−µ)2

2σ2

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

Emerging Complexity and
Behaviour in Lenia using

standard Genetic
Algorithm

11/24

12/24

Fitness AE

Encoder D
ec
od

er

Z

X X’
Gθ FθBottleneck!

Original Input Reconstructed Input

Latent representation
of the input learned
Compressed Low

Dimensional

Identical X≈X’

Orderly have smaller reconstruction loss

Random have higher reconstruction loss

Figure: Compression based: AutoEncoder [Cisneros et al., 2019]

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

13/24

Fitness VoT

Variation Over Time

Figure: Variation based: Variation over Time

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

14/24

Fitness AEVoT

Algorithm 2. Fitness Calculation using PSTD

Input : Board input frames
Output: Population standard deviation (pstd)

1 Begin

2 Calculate pstd over frames using the following steps:; Set a threshold
value between 0 and 1 for the continuous CA; For each frame do

3 Calculate the number of alive cells in the frame by thresholding
the pixel values; Store the number of alive cells in a list;

4 Calculate the population standard deviation (pstd) of the list:;
mean = 1

n

Pn
i=1 numi; variance = 1

n

P
i = 1n(numi �mean)2;

pstd =
p
variance; return The pstd value;

Algorithm 3. Auto-Encoder based Variation over Time (AEVoT)

Input : Input frames of Lenia patterns
Output: Population standard deviation (pstd) over list of alive cells

count of each frame

1 Begin

2 Reconstruct the original frames using an auto-encoder (AE):; For
each input frame f do

3 fAE = AE(f); Calculate the number of alive cells in the
reconstructed frame fAE using a threshold:;
alivef = count(p � threshold); Store the number of alive cells
alivef in a list;

4 Calculate the population standard deviation (pstd) of the list of
alive cells counts:; mean = 1

n

P
i = 1nalivei;

variance = 1
n

P
i = 1n(alivei �mean)2; pstd =

p
variance;

return Population standard deviation (pstd) over list of alive cells
count of each frame;

Figure: AEVoT Based: Combined Approach

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

15/24

Selection, Crossover, and Mutation

Roulette Wheel Selection

No Crossover

Mutation by perturbation

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

Results from different
experiments for AE, VoT

and AEVoT

16/24

17/24

VoT based Experiments

It can clearly be seen in this plot diagrams where
only few experiments show evolution in later
stages, while some attains a suboptimal fitness at
early stage and do not provide any reason to pick
to run for longer generations.

1P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.1_100_FRAMES 2P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.5_100_FRAMES

3P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.5_LAST_10_FRAMES 4P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.5_EVERY_10TH_FRAMES

5P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.3_LAST_10_FRAMES 6P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.3_EVERY_10TH_FRAMES

7P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.3_100_FRAMES
8P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.1_EVERY_10TH_FRAMES

9AE_VOT_P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.1_EVERY_10TH_FRAMES

Figure: VoT experiments

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

18/24

AE based Experiments

The table is divided into 18 cells where each
cells has a plot. Two adjacent cells contains plots
from same experiment. Two adjacent cells should
be viewed together such that left cells represents
plot from best fitness and right cell represents
mean average of the experiment.

1AE_36bottleneck_allframe 2AE_72bottleneck_allframe

3AE_16bottleneck_allthframe 4AE_36bottleneck_every10thframe

5AE_72bottleneck_every10thframe 6AE_16bottleneck_every10thframe

7AE_36bottleneck_last10thframe 8AE_16bottleneck_last10thframe

9AE_72bottleneck_last10thframe

Figure: AE experiments

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

19/24

AEVoT based Experiments

The table shows 9 experiments of AEVoT based
fitness for Evolutionary Lenia. It is interesting to
see how some configurations achieved a stability
sooner while some experiments continue to
evolve even at 500th generation. Based on this,
such experiments are picked for longer gens.

1AE_VOT_P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.5_100_FRAMES_64x64
Size

2AE_VOT_P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.5_LAST_10_FRAMES_64x64size

3AE_VOT_P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.1_LAST_10_FRAMES_64x64size 4AE_VOT_P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.1_100_FRAMES

5AE_VOT_P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.3_EVERY_10TH_FRAME_64x64siz
e 6AE_VOT_P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.3_LAST_10_FRAMES

8AE_VOT_P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.3_100_FRAMES

9AE_VOT_P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.1_EVERY_10TH_FRAMES

7AE_VOT_P10_G500_M0.02_ALIVE_CELL_THRESHOLD0.5_EVERY_10TH_FRAMES_64x64s
ize

Figure: AEVoT experiments

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

20/24

AEVoT based Experiments: Known Kernel

Generation 1 Kernel and Growth Function Frames 1, 25, 50, 75 and 100

Generation 34 Mutated Kernel and Growth Function

Generation 142 Mutated Kernel and Growth Function ; Note that Kernel found at gen 142 remains elite for all rest of the 358 generations

Figure: AEVoT experiment for known kernel: Adaptable mutations

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

21/24

Challenges, Learnings and Conclusion

Automated Discovery, Emergent Agency, Open-Endedness
[Chan, 2018];

A strong hypothesis and supporting proofs for chosen
parameters, yields good results (We discovered a ring forming
bacteria);

Evolution is time-taking!

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

22/24

Future Scope of Improvement

Mutating Known Kernels.

Particle Lenia, Flow Lenia, Sensorimotor Lenia

Using JAX.

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

23/24

Major References

Chan, B. W.-C. (2018).
Lenia-biology of artificial life.
arXiv preprint arXiv:1812.05433.

Cisneros, H., Sivic, J., and Mikolov, T. (2019).
Evolving structures in complex systems.
In 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pages 230–237.
IEEE.

Clune, J. (2019).
Ai-gas: Ai-generating algorithms, an alternate paradigm for producing general artificial
intelligence.
arXiv preprint arXiv:1905.10985.

Randazzo, E. and Mordvintsev, A. (2023).
Biomaker ca: a biome maker project using cellular automata.
arXiv preprint arXiv:2307.09320.

Stanley, K. O., Lehman, J., and Soros, L. (2017).
Open-endedness: The last grand challenge you’ve never heard of.
While open-endedness could be a force for discovering intelligence, it could also be a
component of AI itself.

Living Technology Lab: https://www.nichele.eu/lab.html Contact: Sanyam Jain (https://s4nyam.github.io)

https://www.nichele.eu/lab.html
https://s4nyam.github.io

Play with it:
https://s4nyam.github.

io/evolenia/

24/24

https://s4nyam.github.io/evolenia/
https://s4nyam.github.io/evolenia/

	Complexity and Open-Endedness
	Complexity
	Open-Endedness
	Evolvability

	Lenia
	Continuous CA
	Lenia Update Rule
	Kernel and Growth Function

	Emerging Complexity and Behaviour
	EvoLenia: Compression based
	EvoLenia: Variation based
	EvoLenia: AEVoT
	EvoLenia: Rest details

	Results
	Results VoT (Not a good fitness!)
	Results AE (Not a good fitness!)
	Results AEVoT (Better than both)
	Results AEVoT (for known Kernel)

	Challenges and Future Improvements
	Challenges, Learnings and Conclusion
	Future Scope of Improvement

	References and Offline material

