
NOTES for WIVACE:

Slide 1: Hello everyone! I am Sanyam from India, currently doing Masters in 
Applied CS in Norway under supervision of prof Stefano Nichele at 
Østofold University College and OsloMetropoliton university. The title of 
our work is “Capturing emerging complexity in Lenia” where we explore 
emerging behaviour in open-ended system called EvoLenia.

Slide 2: These are contents for the rest of the presentation. I will try to 
quickly wrap up the presentation in 15 minutes however, if I extend, please 
feel free to stop me in between.

Slide 3: We will start with complexity and open-endedness as background 
and theoretical build up.

Slide 4: In Alife, solving a specific task is considered suboptimal and 
insufficient. Manual AI (or traditional DL) is extremely difficult to take 
these learned model and evolve further in order to reuse as many 
parameters. Which makes it non open-ended. Novelty search, sometimes 
better than task based, stochastic updates, and 
hybrid approaches also seem to be driving complexification in literature. 
We ll see more about how complexification and open-endedness goes 
together?

Slide 5: Open-endedness, no tasks, sometimes there is no task helps to 
evolve smart and interesting metrics over a task landscape or distribution. 
Endless variation implies complexification because any fixed size of 
complexity would exhasut the existing interestingness or variation 
eventually. 

Slide 6: Thererfor an unbounded complexity is required. It also includes 
other fundamental quesitons like sensitivity to initial conditions, adaptive 
mutations, selection pressure and fitness landscape.  One way of thinking 
is agents and tasks can be co-evolved so tasks become increasingly 
complex wiht agents. OR. there can be another approach for example 
auto-telic where agents figure out what tassks to explore themselves. In a 
recent work, BioMaker CA, authors provide importance about heritable 
genetics and selectable phenotypes. Without Evolvability there would be 
no discovery, no new behaviour; 

Slide 7: So to study such systems, we implemented EvoLenia using Lenia 
framework which is wide known CA environment recently.

Slide 8: Discrete cellular automata (e.g., Game of Life) involve grid-based 
cells transitioning between defined states via set rules, yielding emergent 



patterns. In contrast, continuous cellular automata like Lenia use 
differential equations to create fluidic, unbounded patterns in a 
continuous time and space framework. The Kernel used in discrete CA 
consist of 1s and 0s for example Moore Neighborhood and Growth function 
also uses discrete space while in Lenia, Kernel and growht function both 
are part of Gasussian functions to smoothen it.

Slide 9: The update rule is pretty simple where new state is calculated by 
addition of the current state to the update grid. In simpler words, kernel is 
convolved over the current grid space and the resultant value is passsed to 
Gaussian growth function. Finally it gets multiplied with time delta to make 
every behaviour time shifted.

Slide 10: A quick description of Kernel and Growth function that are used 
in Lenia.

Slide 11: Now we will come to the proposed work and how to actually 
studying emergent complex behaviour in Lenia worked in this project.

Slide 12: We implemented standard genetic algorithm containing regular 
practices for example, population, fitness, mutation and no crossover. We 
will discuss only about the types of fitness functions used here. First is 
AutoEncoder based or compression based fitness. The idea is the latent 
bottleneck should provide a large reconstruction loss for the input 
behaviour which is too random while it is expected to have smaller 
reconstruction loss for the too orderly behaviour. However interestingness 
should be in betweem.

Slide 13: Another fitness that we implemeneted is variation over time. This 
fitness tracks the number of active cells in the board states over time 
while regulating with a threshold. Deviation is a measure of the 
randomness or differences in states of a system, and can be used to 
quantify the variation of complexity in a system over time. The VoT 
approach is particularly useful in identifying temporal patterns and trends 
in the system’s behavior, which can be indicative of its underlying 
complexity.

Slide 14: The third and final fitness function that we devised is AEVoT or 
AutoEncoder variation over time, it simply reconstructs the behaviour 
input and then performs the VoT.

Slide 15: we used Roulette wheel selection, not used any means of 
crossover, and mutatiob by perturbation of the pixels.

Slide 16: Now we will come to results section and discuss results from 



each fitness types. It provides summary of over 27 experiments in total for 
500 generations.

Slide 17: These experiments are for VoT with population size 10, 500 
generations, and a fixed size of mutation rate of 0.02 which means 2 pixels 
are perturbed in each generation at least. While we have Varying alive cell 
Threshold (0.1, 0.3, 0.5) and Varying Frames (All 100 frames, last 10th 
frame, every 10th frame). 

Slide 18: These experiments are for AE with population size 10, 500 
generations, and a fixed size of mutation rate of 0.02 which means 2 pixels 
are perturbed in each generation at least. While we have Varying 
Bottleneck Size (16, 32, 72) and Varying Frames (all 100frames , last 10th, 
every 10th)

Slide 19: These experiments are for AEVoT with population size 10, 500 
generations, and a fixed size of mutation rate of 0.02 which means 2 pixels 
are perturbed in each generation at least. While we have Varying 
Threshold (0.1, 0.3, 0.5) and Varying Frames (all 100 frames, last 10th, 
every 10th) for the fitness. It is interesting to see how some configurations 
achieved a stability sooner while some experiments continue to evolve 
even at 500th generation. Based on this, such experiments are picked for 
longer gens.

Slide 20: We experimented longer runs with multiple known kernels. 
Results from those experiments are published online of which the URL is 
shared in the last slide of this presentation. However, among all those 
emerging behaviour, we could pick one particular experiment that shows 
significant improvement in robustness to the perturbations over 
generation and we identified such roaming bacteria like behaviour and 
others at some generation and further that even after perturbations 
generations yield same interesting behaviour over further genearations 
which means there is no progress over generations unless there is some 
interesting behaviour is identified. Hence usefulness of our platform.

Slide 21: Few challenges are introduced by Bert Chan in ALife 2021, to 
name a few, Automated Discovery, Emergent Agency, and Open-
Endedness. We learned that starting with random kernel could not produce 
stable behaviour. Those random behaviour patterns are put on the 
EvoLenia portal. But choosing a known kernel could evolve stable and 
emerging complex behaviours for example ring forming bacteria. And yes 
Evoltion is time taking. The experimental specificaitions and requirements 
are also available on the portal.

Slide 22: Future scope of improvements can be mutating more interesting 
known kernels, that are also made available on the portal and github 



repository. The portal link will be shown in the end. Other models of Lenia, 
like particle Lenia, and others can be explored with this platform too. And 
finally, JAX is a very useful tool that can improve efficiency of the 
simulations, but adds a dependency on costly GPU.

Slide 23: Following are the major references that were used for this 
presentation.

Slide 24: This is the final slide. Thank you for keeping all attention to the 
presentation. And the portal is available here with the mentioned link.


